Recently, there has been some progress on Newton-like iteration method terjemahan - Recently, there has been some progress on Newton-like iteration method Bahasa Indonesia Bagaimana mengatakan

Recently, there has been some progr

Recently, there has been some progress on Newton-like iteration methods
improving Newton’s method [1,2,8,9,11–14,17,31,33]. To obtain some of those
iteration methods the Adomian decomposition method was applied in [1,8,9],
He’s homotopy perturbation method [2,11,14–16] and Liao’s homotopy analysis
method [20–29] by scientists and engineers because the latter two methods are
to continuously deform a simple problem easy to solve into the difficult problem
under study. The convergence of Newton-like methods are proved in, e.g., [7,19,
25]. However, the Newton-like methods developed so far are mostly based on a
specific form of equations or systems that often lead to a restricted application to
produce any further Newton-like formulae as the need arises.
In this paper the analytic approximate technique for nonlinear problems, namely
the homotopy analysis method [22,24,26–28], which has already been successfully
applied to many nonlinear problems, is employed to develop a numerical scheme
that can be used in constructing new Newton-like iteration methods or further
improving the already existing iterative methods to the order of convergence as
high as one wants. To that end, the homotopy analysis method is applied to a
transformed equation in general form equivalent to the nonlinear equation, not the
nonlinear equation itself. It should be noted here that in this work the homotopy
analysis method is applied to the nonlinear algebraic equations, not the differential
equations.
The paper is organized as follows. The proposed scheme is described in Sect. 2
in detail together with some illustrations in Sect. 3 of various kinds of iteration
formulae derived from the proposed scheme. We also give a detailed convergence
analysis of the obtained iteration formulae analytically or with the help of symbolic
computation of mathematical software package Maple. Lastly, numerical illustra-
tions are given.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Recently, there has been some progress on Newton-like iteration methodsimproving Newton’s method [1,2,8,9,11–14,17,31,33]. To obtain some of thoseiteration methods the Adomian decomposition method was applied in [1,8,9],He’s homotopy perturbation method [2,11,14–16] and Liao’s homotopy analysismethod [20–29] by scientists and engineers because the latter two methods areto continuously deform a simple problem easy to solve into the difficult problemunder study. The convergence of Newton-like methods are proved in, e.g., [7,19,25]. However, the Newton-like methods developed so far are mostly based on aspecific form of equations or systems that often lead to a restricted application toproduce any further Newton-like formulae as the need arises.In this paper the analytic approximate technique for nonlinear problems, namelythe homotopy analysis method [22,24,26–28], which has already been successfullyapplied to many nonlinear problems, is employed to develop a numerical schemethat can be used in constructing new Newton-like iteration methods or furtherimproving the already existing iterative methods to the order of convergence ashigh as one wants. To that end, the homotopy analysis method is applied to atransformed equation in general form equivalent to the nonlinear equation, not thenonlinear equation itself. It should be noted here that in this work the homotopyanalysis method is applied to the nonlinear algebraic equations, not the differentialequations.
The paper is organized as follows. The proposed scheme is described in Sect. 2
in detail together with some illustrations in Sect. 3 of various kinds of iteration
formulae derived from the proposed scheme. We also give a detailed convergence
analysis of the obtained iteration formulae analytically or with the help of symbolic
computation of mathematical software package Maple. Lastly, numerical illustra-
tions are given.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Baru-baru ini, telah ada beberapa kemajuan pada metode iterasi Newton-seperti
meningkatkan metode Newton [1,2,8,9,11-14,17,31,33]. Untuk mendapatkan beberapa dari mereka
metode iterasi metode dekomposisi Adomian diterapkan di [1,8,9],
Dia metode perturbasi homotopy [2,11,14-16] dan analisis homotopy Liao
metode [20-29] oleh para ilmuwan dan insinyur karena dua yang terakhir metode yang
terus merusak masalah sederhana mudah untuk memecahkan ke dalam masalah yang sulit
diteliti. Konvergensi metode Newton-seperti yang terbukti dalam, misalnya, [7,19,
25]. Namun, metode Newton-seperti yang dikembangkan sejauh ini sebagian besar didasarkan pada
bentuk spesifik dari persamaan atau sistem yang sering menyebabkan aplikasi terbatas untuk
menghasilkan lebih jauh formula Newton-seperti saat diperlukan.
Dalam tulisan ini teknik analisis perkiraan untuk masalah nonlinear, yaitu
metode analisis homotopy [22,24,26-28], yang telah berhasil
diterapkan untuk berbagai masalah nonlinier, digunakan untuk mengembangkan skema numerik
yang dapat digunakan dalam membangun baru metode iterasi Newton-seperti atau lebih
meningkatkan metode iterasi yang sudah ada untuk urutan konvergensi sebagai
tinggi sebagai salah satu ingin. Untuk itu, metode analisis homotopy diterapkan pada
persamaan diubah dalam bentuk umum setara dengan persamaan nonlinear, bukan
nonlinear persamaan itu sendiri. Perlu dicatat di sini bahwa dalam pekerjaan ini homotopy
metode analisis diterapkan pada nonlinear persamaan aljabar, bukan diferensial
persamaan.
Makalah ini disusun sebagai berikut. Skema yang diusulkan dijelaskan dalam Sect. 2
secara rinci bersama-sama dengan beberapa ilustrasi di Sect. 3 dari berbagai jenis iterasi
formula yang berasal dari skema yang diusulkan. Kami juga memberikan konvergensi rinci
analisis formula iterasi yang diperoleh secara analitis atau dengan bantuan simbolis
perhitungan matematika paket perangkat lunak Maple. Terakhir, ilustrasi numerik
tions diberikan.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: